Poultry meat pathogens and its Control

Theodore J. Mbata
Department of Applied Microbiology and Brewing
Nnamdi Azikiwe University, P.M.B 5025
Awka Nigeria

Abstract
Poultry meat can be contaminated with a variety of foodborne pathogens that may cause human illness following ingestion and is due to handling of raw meat, undercooking or mishandling of the cooked product. While Salmonella and Campylobacter spp. remain the organisms of greatest global concern, others present include the more recently reported Arcobacter and Helicobacter spp. and, occasionally, verotoxigenic Escherichia coli. Also considered here is the growing problem of antimicrobial resistance among poultry-associated pathogens. Because of the need for a systematic and universally applicable approach to food safety control, the Hazard Analysis Critical Control Point (HACCP) concept is increasingly being introduced into the Poultry Industry, and Quantitative Risk Assessment (QRA) is being developed. Among a number of completed and on-going studies on QRA are those undertaken by FAO/WHO on Salmonella and Campylobacter in broilers. In the case of Campylobacter, however, any QRA must assume at present that all strains have the same pathogenic potential for humans, even though this is unlikely to be the case. Implementation of the HACCP system in poultry processing plants addresses zoonotic agents that are not detectable by conventional meat inspection procedures. The system brings obvious benefits in optimizing plant hygiene, ensuring compliance with legislation and providing evidence of ‘due diligence on the part of the processor. It is now being applied globally in two different situations: in one, such as that occurring in the USA, carcass contamination is progressively reduced as carcasses pass through the process and are finally chilled in super-chlorinated water. There is also the option to use a chemical-rinse treatment for further reduction of microbial contamination. In the second scenario, processors in the EU are not allowed to super-chlorinate process water, and water chilling, which has an important washing effect, is confined to carcasses intended for freezing. Also, chemical decontamination is prohibited until 2006 at the earliest. Therefore, for fresh carcasses that are air chilled, there is presently no progressive reduction in carcass contamination and no Critical Control Point at which a significant reduction in pathogen contamination can be guaranteed. Overall, effective control of the organism is best realized through a farm-to-fork approach at all stages of the supply chain.

Keywords: Poultry meat, processing, microbial pathogens, controls.

Introduction
Contamination of poultry meat with foodborne pathogens remains an important public health issue, because it can lead to illness if there are malpractice in handling, cooking or post cooking storage of the product. In developed countries, foodborne illness causes human suffering and loss of productivity, and adds significantly to the cost of food production and healthcare. It is also a possible cause of mortality, which is even more of a problem in developing regions, where the health status of many individuals is already compromise. Numerically, the most important agents are Salmonella and Campylobacter spp. Data for the European Union (EU) show that in 2001, there were 157,822 reported cases of human salmonellosis and 156,232 cases of Campylobacter enteritis (Cavitte, 2003), although both diseases are known to be under-reported, and true figures are likely to be considerably higher. While poultry is by no means the only sources of the causative organisms, it is widely recognized as a major reservoir in each case, due to symptomless carriage in the live bird (Table 1). The problem is exacerbated by modern conditions of intensive rearing, where large number of birds
are kept together, and high-rate processing, in which carcasses remain in close proximity throughout the operation. Such conditions favor the spread of any pathogens that may gain access to the flock. Moreover, usage of antimicrobials in poultry production, where for prophylactic, therapeutic or performance-enhancing purposes, contributes to the development of resistance in pathogens, which is increasing, and can have serious consequences for the treatment of human illness from these organisms. With salmonellosis, for example, the testing of 27 000 isolates from human cases in ten European countries in 2000, showed that almost 40% were resistant at least one antimicrobial, while 18% were multiresistant (Threlfall et al., 2003). Multiple resistance was most often observed in serotype Typhimurium, including DTs 104 and 204b, and 51% of Typhimurium strains were in this category. Serotypes from human with multiple resistance include those that also found in poultry, of which S. paratyphi B variant Java is the most recent example. In the Netherlands, variants Java had increased in poultry from less than 2% of isolates before 1996 to 60% in 2003 (Van Pelte et al., 2003). The resistance of Campylobacter to antimicrobial is also rising, especially to fluoroquinolones, which are widely used in both human and veterinary medicine.

Table1.1 Feature of Intestinal carriage in Campylobacter and Salmonella spp.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Campylobacter</th>
<th>Salmonella</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host susceptibility</td>
<td>Not age-related</td>
<td>Age-related</td>
</tr>
<tr>
<td>Preferred site</td>
<td>Caeca</td>
<td>Caeca</td>
</tr>
<tr>
<td>Preferred niche</td>
<td>Mucus in crypts</td>
<td>None</td>
</tr>
<tr>
<td>Colonisation type</td>
<td>Persistent</td>
<td>Transient/intermittent</td>
</tr>
<tr>
<td>Carriage level</td>
<td>Relatively high</td>
<td>Variable</td>
</tr>
<tr>
<td>Invasiveness</td>
<td>Some strains</td>
<td>Some strains</td>
</tr>
<tr>
<td>Colonization genes</td>
<td>Some identified</td>
<td>Some identified</td>
</tr>
</tbody>
</table>

Although salmonella and campylobacter spp. are the predominant food-borne pathogens associated with poultry and are frequently implicated in human illness from this source, other pathogens also occur, including Clostridium perfringens, Escherichia coli 0157 and Listeria monocytogenes, together with those recognised more recently, such as Arcobacter and Helicobacter spp. This paper will consider the significance of the key organisms as meat contaminants and the extent to which their incidence on poultry products is likely to be affected by application of the Hazard Analysis Critical Control Point (HACCP) system and development of Quantitative Risk Assessment as food-safety management tools.

Salmonella and Campylobacter

Contamination of poultry carcasses and parts with these organisms is well documented and data are available for many parts of the world (e.g Waldroup 1996: Simmons et al., 2003), although inter-country comparisons are not usually possible, because of differences in sampling and methods of testing. Most salmonella found on poultry meat are non-host-specific and are considered capable of causing human food poisoning. The thermophilic campylobacters are mainly C. jejuni, which is the principal cause of human campylobacteriosis, but other so called ‘Campylobacteria’ also occur frequently, and includes species of Arcobacter and Helicobacter pullorum. Their potential for causing human illness has been discussed by Corry and Atabay (2001). For processed poultry, both the proportion of positive samples and the number of organisms present per unit sample is greater for Campylobacter than it is for Salmonella, reflecting the higher level of intestinal carriage at slaughter (Table 1), which can be up to 10⁹ cfu/g. With Salmonella, there is wide variation in the incidence of positive carcasses, but counts rarely exceed 200 cfu/carcass, well below level normally associated with food poisoning. However, both types of bacteria include strains that are invasive in poultry and can penetrate internal organs or deep tissues of the bird,
where the organisms may be less readily destroyed by cooking. On the surface, campylobacter contamination tends to be relatively high, up to 10^6 cfu/carass. Since the ineffective does is only a few hundred viable cells, illness can easily result from handling raw poultry without suitable hygiene precautions, and is a hazard for new staff in poultry processing plants.

Salmonella survive well in the environment, but campylobacters appear less well-adapted to survival outside the alimentary tract of warm blooded animals. Also, growth only occurs under conditions of high moisture, reduced oxygen and an environmental temperature above 30°C. The organisms are particularly sensitive to drying and the effects of freezing and thawing, which can cause a 1-2 log reduction in the level of contamination on poultry meat. However, campylobacters have many different hosts, they colonise at high levels and therefore are shed into the environment in large numbers. There is still much debate about possible survival mechanisms outside the host, including the ability to exist in a supposedly dormant form, in which the organisms appear to be viable, but non-culturabe by conventional methods. From the practical viewpoint, campylobacters can persist as contaminants of poultry products throughout the entire supply chain and remain detectable by culturable methods. A key factor in their survival may be their attachment to, or entrapment in, poultry tissues during carcass processing. In this situation, their resistance to adverse conditions, like that of other bacteria, is significantly increased. Thus, the organisms can survive on carcasses during processes such as scalding, washing and water chilling, that might otherwise remove or destroy them.

Clostridium perfringens

As a cause of human food poisoning, this is not among the more dangerous pathogens. It is, however, a spore-forming organism and some strains produces spores that are unusually heat-resistant. Therefore, unlike vegetative bacterial cells, the spores are not necessarily destroyed by normal cooking and may subsequently germinate and outgrow to hazardous levels, if post-cooking storage is inadequate. In fact, most outbreaks involve strains that produce the more heat-resistant spores. In a survey of food-poisoning outbreak associated with poultry in England and Wales during 1992 – 1999, Cl., Perfringens was found to be some responsible for 21% of the outbreaks, second only to Salmonella as a causative agent (Kessel et al., 2001). In some instances, the problem arose from consumption of contaminated turkey at Christmas time, when storage of the larger, whole carcasses used for festive meals appear to have been at fault. The organism is an obligate anaerobe that is relatively tolerant to oxygen and can be found in low numbers in the alimentary tract of poultry. When present in meat crevices etc, growth is favoured by conditions in which oxygen has been dispelled by cooking. However, since growth of the organisms cannot occur if the meat is held below 15°C, the problem is easily avoided by refrigerated storage.

Escherichia coli 0157

Verocytotoxin-producing strains of *E.coli* (VTEC), cause diarrhoea and haemorrhagic colitis in humans and can lead to potentially life-threatening sequelae such as haemolytic uraemic syndrome and thrombotic thrombocytopaenic purpura. Although VTEC strains occur in a wide range of O serogroups, the most important in human disease is 0157, which accounts for almost all major foodborne outbreaks in Europe and the USA. In England and Wales, the first case involving this organism occurred in 1982 and reported cases have increased steadily since then, reaching a peak of 1087 in 1997(PHLS data). While VTEC 0157 is mostly found in ruminant animal, it is occasionally associated with other livestock and various foods of animal origin. To what extent is the organism a matter of concern in relation to poultry? An outbreak in the UK that was associated with eating turkey roll was reported by Salmon et al. (1989) and two further outbreaks linked to chicken dishes were mentioned by Kesse et al. (2000). Experience suggests that VTEC 0157 is rare in poultry, whether in the live birds or on processed products, and when it has been found, tests for the necessary virulence factors have not always
Listeria monocytogenes

The organism is a leading cause of food-related mortality and morbidity in man, and the majority of cases are believed to be food-borne. The symptoms vary widely and those affected are frequently among the most vulnerable groups in society. Nevertheless, despite the common occurrence of L. monocytogenes in a variety of foods, human listeriosis is relative rare, which may be due in part to the high infective dose of 10^9 viable cells that appears to be necessary in most cases (Smerdon et al., 2001). The organism is common on raw poultry meat and has been found on chicken, turkey, duck and pheasant. Numerous surveys have shown that more than 50% of processed chicken are likely to be positive, although numbers are usually low, even < 1/cm2 of skin.

In a survey of retail meats in the USA, Doyle and Schoeni (1987) found in VTEC 0157 in 1.5% of 263 samples of chicken and turkey leg meat. Although Heuvelink et al. (1999) could find no VTEC 0157 in chicken faeces, 1.3% of 459 pooled samples from turkeys were positive and one isolate contained genes for type 2 verotoxin, attaching-and-effacing capability and the relevant haemolysin. Because of these virulence factors, the strain was clearly capable of causing illness in man. Only turkeys had been kept on the farm in question, so transfer of the strain from other livestock was unlikely. VTEC other than 0157 were found in 12% of retail chicken samples and 7% of turkey samples in the USA by Samadpour et al., (1994).

Despite the rarity of VTEC 0157 in poultry, experimental studies have shown that chicks can be readily colonized with a challenge dose as low as 10 cfu/bird (Schoeni and Doyle, 1994) and colonization may persist for at least three months. Another study (Stavic et al., 1993) showed that the organism was present, following challenge, on caecal mucosa and in the content of the lumen. The extent of colonization depended on dose, age, breed and time after exposure. However, colonization could be reduced by competitive exclusion (CE) treatment, using a culture of faecal material from a pathogen free donor. Bird. Harkinen and Schneitz (1996) obtained a 4-log reduction in colonization, when a commercial CE product was used to treat chicks before challenge.

Since VTEC 0157 is capable of colonizing poultry without causing illness in the birds, is present in some wild-bird vectors, survives well in soil and is able to grow in chicken manure held at ambient temperatures, it is surprising that the organism is not found more often in commercial broiler flocks. The significance of non-0157 VTEC, which also appear to occur infrequently in poultry, needs to be investigated.
free from all the pathogenic organisms. It is widely recognized, however, that this is not a realistic goal for raw poultry meat. There is still no economically viable means of eliminating foodborne pathogens in poultry-meat production, without the use of ionising radiation, which is presently unacceptable to most consumers. Therefore, some level of product contamination must be tolerated, although this varies widely from one country to another, especially in relation to Salmonella. In Sweden, which has a small poultry industry, the prevalence of Salmonella contaminated poultry meat has been less than 1% for many years and the organism are rarely found in retail samples due to rigorous surveillance and control programmes that are relatively costly to operate (Persson and Jendteg, 1992). Food from which salmonellas are isolated in Sweden is, by law, considered unfit for human consumption. By contrast, countries with larger, more complex poultry industries find control of Salmonella more difficult and subject to cost constraints. In the UK, improved practices in production and processing have led to a steady decline in the contamination rate, the latest survey of retail chicken showing only 5.7% of samples positive, in comparison with almost 80% some 20 year ago (Report 1996). This can be attributed largely to control at farm level, especially in relation to S. enteritidis (Table 2).

Table 2: Changes in Incidents of some Salmonella serotype in British Chickens.

<table>
<thead>
<tr>
<th>Incident (%)</th>
<th>199</th>
<th>199</th>
<th>200</th>
<th>200</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serotype</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enteritidis</td>
<td>21.0</td>
<td>16.6</td>
<td>3.2</td>
<td>0.9</td>
<td>0.8</td>
</tr>
<tr>
<td>Typhimurium</td>
<td>5.8</td>
<td>7.5</td>
<td>6.7</td>
<td>3.5</td>
<td>6.1</td>
</tr>
<tr>
<td>Senftenberg</td>
<td>5.6</td>
<td>11.4</td>
<td>12.4</td>
<td>21.6</td>
<td>16.7</td>
</tr>
<tr>
<td>Livingston</td>
<td>1.9</td>
<td>3.6</td>
<td>6.3</td>
<td>4.0</td>
<td>8.9</td>
</tr>
<tr>
<td>Liverpool</td>
<td>5.9</td>
<td>1.6</td>
<td>2.1</td>
<td>2.6</td>
<td>6.9</td>
</tr>
<tr>
<td>Mbandaka</td>
<td>10.2</td>
<td>6.2</td>
<td>9.2</td>
<td>3.5</td>
<td>6.6</td>
</tr>
<tr>
<td>Thompson</td>
<td>6.2</td>
<td>5.3</td>
<td>5.3</td>
<td>6.2</td>
<td>6.5</td>
</tr>
</tbody>
</table>

(Date: veterinary laboratories Agency, Weybridge, UK)

The microbiological hazards in the processing operation are well known and are often difficult to control effectively, because of the technological limitations in the process that can lead cross-contamination of the carcasses being processed. Implementation of the HACCP system does not overcome this drawback, but has a number of clear benefits, including the following:

1. The system ensures regular monitoring of the process as a whole.
2. Hygiene control is optimized, within the above-mentioned constraints, thereby providing evidence of ‘due diligence’ on the part of the processor, as required by UK food law.
3. Checking of control parameters and recording of results are in integral part of the system.
4. Compliance with hygiene legislation is ensured.
5. Staff awareness of food-safety requirements is increased.
6. As a result of national HACCP implementation, operational standards...
across the industry become more uniform.

Cross-contamination of carcasses can occur at virtually every stage of the process and currently there is little evidence that this problem is significantly reduced by the application of HACCP principles, without a decontamination step. Also unclear is the effect of the HACCP system on levels of carcass contamination, although this will vary according to the type of process used and permitted intervention measures in different countries. The most effective type of process for reducing contamination is likely to be one in which carcasses are immersion-chilled in chlorinated water and then frozen. In USA, where water-immersion chilling is the norm and super-chlorination of process water is permitted, there is also the option to use a chemical decontamination treatment for carcasses, which may involve substances such as trisodium phosphate, acidified sodium chlorite or peroxyacetic acid (Russell, 2003). In this respect, there is currently a very different situation in the EU, because super-chlorination is not allowed, immersion chilling has been largely replaced by air chilling or evaporative cooling, and any form of chemical decontamination is unacceptable. Therefore, in the case of fresh carcasses that are air chilled, there is no progressive reduction in carcass contamination (Allen et al., 2000; Fluckey et al., 2003). Moreover, there is no Critical Control Point at which a significant reduction in pathogen contamination can be guaranteed. However, this unsatisfactory situation may change in 2006 (Report, 2003). Without the use of processing aids to improve hygiene, the greatest reduction in carcass contamination is likely to come from technological developments in the process that are designed to improve hygiene, as long as these are acceptable to the industry. For example, a process for simultaneous scalding and plucking of broilers, although not adopted commercially reduced levels of Enterobacteriaceae on carcasses by one hundred-fold in experimental trials (Mulder, 1985). On the other hand, a study aimed at reducing Campylobacter contamination by merely optimizing existing processing procedures, achieved much smaller improvements (Mead et al., 1995). Possible benefits from physical carcass decontamination treatments that are being developed to reduce levels of Campylobacter are shown in Table 3.

Table 3 Effects of physical decontamination treatments in reducing levels of campylobacter

<table>
<thead>
<tr>
<th>Treatment</th>
<th>*Log_{10} reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling/drying, 20°C/(C)</td>
<td>0.3</td>
</tr>
<tr>
<td>Drying/heating:</td>
<td></td>
</tr>
<tr>
<td>30°C, 15 min (S)</td>
<td>1.0 – 2.0</td>
</tr>
<tr>
<td>40°C, 15 Min (S)</td>
<td>2.0 – 3.5</td>
</tr>
<tr>
<td>Crust – freezing (C)</td>
<td>0.4</td>
</tr>
<tr>
<td>Steam at 100°C, 12 sec(C)</td>
<td>2.5</td>
</tr>
</tbody>
</table>

* Carcasses (C) or skin portion (S) inoculated with a poultry strain of C. jejuni (Corry et al., 2003 and personal communication)

Mandatory use of the HACCP system in US processing plants, which began in 1997, is coupled with performance standards that include a Salmonella prevalence of 20% for post-chill broiler carcasses (Federal Register, 1996). How cost-effective has this approach been in reducing human salmonellosis? In posing the question, it must be acknowledged that the Salmonella status of processed carcasses depends ultimately on control measures taken on the farm, which are not addressed directly in the legislation. Attempt to meet the requirements of the so-called ‘Mega-Reg’ have involved a 30-40% increase in the use of clean water during processing, and overall costs are said to be several times higher than official forecast (Ollinger and Mueller, 2003). So far, there is no real evidence that human salmonellosis has fallen in USA as a result of HACCP implementation. In the year 1999, there were 32 782 reported isolations of Salmonella from human cases, increasing to 33 310 in 2000 and then decreasing to 31 675 in 2001 (CDC data). Thus, the recent situation has been relatively static and it could be that the performance standard of 20% is not yet low enough to impact on human salmonellosis.

Microbiological risk assessment (MRA)
MRA is a developing concept, which is complementary to the application of HACCP principles. As defined by the Codex Alimentarius Commission (CAC, 1999), it includes hazards identification, exposure assessment, hazard characterisation. The concept is discussed in relation to poultry by Kelly et al. (2003). It is important not only in quantifying the risk of human illness from a pathogen or microbial toxin associated with poultry, but in determining the extent to which the risk can be reduced by specific intervention measures. Thus, the effect of controlling the hazard at a particular Critical Control Point can be quantified with this approach.

Quantitative risk assessment vary in mathematical complexity, depending on the question being asked. Often, they require a diversity of data that is sufficient to account for any variation that occurs. In practice, data sets are usually far from complete and may be subject to considerable uncertainty. This problem is compounded by the dynamic nature of microbial populations, which undergo continuous change. Dealing with uncertainty has been a feature of the development of MRA and is clearly evident in the case of Campylobacter infections associated with chicken consumption. Here, the true extent to which human cases are derived from eating chickens is unknown, it has to be assumed that all strains of the organism have the same potential to cause human illness and that their pathogenic and survival properties are identical. Also, there is a general lack of data on level of product contamination at different stages of the supply chain and during subsequent handling prior to contamination. Nevertheless, the MRA described by Kelly et al., (2003) makes some important predictions and highlights the effect of freezing poultry meat, which, more than other mitigation strategic examined, will reduce both the chance and level of subsequent human exposure.

Increasingly, risk assessment is being used as a scientific tool to evaluate human health risks from hazardous agents present in foods. In this respect, Munday et al (2003) have identified 36 risk assessments on Salmonella, 18 on Campylobacter and 16 on Listeria, including completed and on-going studies in both developed and developing countries, as well as those undertaken by FAO/WHO on Salmonella and Campylobacter in broilers. However, it is necessary to recognize that MRA is still in its infancy and the degree of uncertainty is high, indicating that much remains to be done to fill the data gaps and refine the mathematical methods involved. Ultimately, MRA will ensure that public health policies have a sound scientific basis and will be directed towards the most effective control strategies.

References

